Magnetohydrodynamic Simulation of the Interaction between Interplanetary Strong Shock and Magnetic Cloud and its Consequent Geoeffectiveness

نویسندگان

  • Ming Xiong
  • Huinan Zheng
  • Yuming Wang
چکیده

Numerical studies have been performed to interpret the observed “shock overtaking magnetic cloud (MC)” event by a 2.5 dimensional magnetohydrodynamic (MHD) model in heliospheric meridional plane. Results of an individual MC simulation show that the MC travels with a constant bulk flow speed. The MC is injected with very strong inherent magnetic field over that in the ambient flow and expands rapidly in size initially. Consequently, the diameter of MC increases in an asymptotic speed while its angular width contracts gradually. Meanwhile, simulations of MC-shock interaction are also presented, in which both a typical MC and a strong fast shock emerge from the inner boundary and propagate along heliospheric equator, separated by an appropriate interval. The results show that the shock firstly catches up with the preceding MC, then penetrates through the MC, and finally merges with the MC-driven shock into a stronger compound shock. The morphologies of shock front in interplanetary space and MC body behave as a central concave and a smooth arc respectively. The compression and rotation of magnetic field serve as an efficient mechanism to cause a large geomagnetic storm. The MC is highly compressed by the the overtaking shock. Contrarily, the transport time of incidental shock influenced by the MC depends on the interval between their commencements. Maximum geoeffectiveness results from that when the shock enters the core of preceding MC, which is also substantiated to some extent by a corresponding simplified analytic model. Quantified by Dst index, the specific result gives that the geoeffecD R A F T April 5, 2009, 12:49pm D R A F T XIONG ET AL.: MC–SHOCK INTERACTION AND ITS GEOEFFECTIVENESS X 3 tiveness of an individual MC is largely enhanced with 80% increment in maximum by an incidental shock. D R A F T April 5, 2009, 12:49pm D R A F T X 4 XIONG ET AL.: MC–SHOCK INTERACTION AND ITS GEOEFFECTIVENESS

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetohydrodynamic Simulation of the Interaction between Interplanetary Strong Shock and Magnetic Cloud and its Consequent Geoeffectiveness 2: Oblique Collision

Numerical studies of the interplanetary “shock overtaking magnetic cloud (MC)” event are continued by a 2.5 dimensional magnetohydrodynamic (MHD) model in heliospheric meridional plane. Interplanetary direct collision (DC)/oblique collision (OC) between an MC and a shock results from their same/different initial propagation orientations. For radially erupted MC and shock in solar corona, the or...

متن کامل

Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness: 2. Oblique collision

The numerical studies of the interplanetary coupling between multiple magnetic clouds (MCs) are continued by a 2.5-dimensional ideal magnetohydrodynamic (MHD) model in the heliospheric meridional plane. The interplanetary direct collision (DC) / oblique collision (OC) between both MCs results from their same/different initial propagation orientations. Here the OC is explored in contrast to the ...

متن کامل

Magnetohydrodynamic simulation of the interaction 1 between two interplanetary magnetic clouds and its 2 consequent geoeffectiveness : 2 . Oblique collision

The numerical studies of the interplanetary coupling between 4 multiple magnetic clouds (MCs) are continued by a 2.5-dimensional ideal mag-5 netohydrodynamic (MHD) model in the heliospheric meridional plane. The 6 interplanetary direct collision (DC) / oblique collision (OC) between both 7 MCs results from their same/different initial propagation orientations. Here 8 the OC is explored in contr...

متن کامل

Effect of Interplanetary Shocks on the AL and Dst Indices

[1] The question of how much interplanetary shock (IP) events contribute to the geoeffectiveness of solar wind drivers is assessed through numerical experiments using the WINDMI model, a physics-based model of the solar winddriven magnetosphere-ionosphere system. Analytic fits to solar wind input parameters (B? , usw, nsw) allowed shocks and associated shock-sheath plasma to be removed while le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009